Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anticancer Agents Med Chem ; 17(2): 250-264, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27745548

RESUMO

Enzymatic activity from tumor and adjacent normal tissue of 200 patients involving deoxycytidine kinase (dCK), uridine/cytidine kinase (U/CK), cytidine deaminase (CD) and deoxycytidylate deaminase (dCMPD) was quantified. Patients with brain (17), colon (24), and breast (30) tumors, 53, 67, and 73%, respectively, had an elevated T/N value (Specific Activity of tumor/ Specific Activity of normal tissue) involving dCK and dCMPD suggesting chemotherapy with 5-fluorodeoxycytidine (5-FdC) alone or in combination with thymidine plus deoxytetrahydrouridine, or with the radiosensitizer, 5-chlorodeoxycytidine (5-CldC) plus tetrahydrouridine (H4U). Among patients with colon (19) and pancreatic tumors (40), 53 and 68 %, respectively, displayed T/N values >4 for CD suggesting chemotherapy with 5-FdC, 4-N-methylamino-5-FdC, 5-trifluoromethyldeoxycytidine and radiosensitization with 5- CldC, 4-N-methylamino-5-CldC, 5-iododeoxycytidine and 5-bromodeoxycytidine. The percent of patients with tumors with a T/N value >4 for U/CK in lung (72), colon (23) and breast (28) was 47, 61 and 68, respectively, suggesting zebularine (plus thymidine) treatment for tumors involving gene silencing. Evidence is presented that the 4-N-alkylamino-dC substituted nucleosides and those with large 5-substitutions are activated only via CD to thymidine kinase (TK) using end-points of cytotoxicity and/or radiosensitization: H4U, the inhibitor of CD is an antagonist, cells with low CD or no TK are resistant to the analogs, the end points are indifferent to the dCK status of cells, they are poor substrates for dCK and good substrates for CD, whereas 5-FdC and 5-CldC are good substrates for both enzymes. The analogs present opportunities for Collateral Sensitivity for 5-azacytidine and gemcitabine resistant tumors.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Nucleosídeos de Pirimidina/uso terapêutico , Antineoplásicos/química , Linhagem Celular Tumoral , Citidina Desaminase/metabolismo , DCMP Desaminase/metabolismo , Desoxicitidina Quinase/metabolismo , Humanos , Neoplasias/enzimologia , Nucleosídeos de Pirimidina/química , Radiossensibilizantes/química , Radiossensibilizantes/uso terapêutico , Uridina Quinase/metabolismo
2.
J Cancer Res Clin Oncol ; 131(9): 609-16, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16044347

RESUMO

This report presents a quantitative analysis of the synergistic interaction of arabinosylcytosine (araC) and cladribine (CdA) in human H9-lymphoid cell lines sensitive and resistant to araC (H9-araC cells). H9-araC cells obtained by cultivation of H9 cells in the presence of 0.5 microM arabinosylcytosine (araC) had lower deoxycytidine kinase (dCK) than the parental cell line. The IC50 values of araC and CdA calculated by using median-effect analysis and CalcuSyn software were: 0.55 microM and 1.16 microM for CdA and 0.0058 microM and 3.5 microM for araC in H9 and H9-araC cells, respectively. These values were reduced to 0.10 microM and 0.38 microM for CdA and to 0.004 microM and to 0.77 microM for araC when the drugs were used in combination. Computerized simulation of dose reduction index (DRI) indicated that at 50-99% growth inhibition levels, the doses of araC could be reduced by 2.0 to 11.9-fold and 2.9 to 5.3-fold and the doses of CdA by 5.9 and 183.7-fold and 3.1 to 164.8-fold in H9 and H9-araC cells, respectively, when the drugs are used in combination. Assessment by combination index (CI) analysis showed that the combination exhibited moderate to strong synergistic lympho-cytotoxic effects. CdA metabolic studies (influx and activation) in the presence of deoxyadenosine, deoxycytidine, or araC suggested that CdA enters cells by a deoxyadenosine-inhibitable transport system, which is different than that of araC and deoxycytidine transport system. Thus, in addition to the known mechanisms, other mechanisms might be involved in the metabolism of CdA. The demonstration that araC and CdA combinations exert synergistic cytotoxicity even in the resistant cells raises hope that such a combination may be useful in tumors that were found resistant to these drugs.


Assuntos
Antineoplásicos/farmacologia , Cladribina/farmacologia , Citarabina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Linfócitos/efeitos dos fármacos , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Linhagem Celular , Cladribina/metabolismo , Cladribina/farmacocinética , Citarabina/metabolismo , Citarabina/farmacocinética , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Humanos
3.
Biochem Pharmacol ; 70(3): 426-32, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-15950950

RESUMO

Continuous in vitro cultivation of human lymphoid H9 cells in the presence of 0.5microM arabinosyl-cytosine (araC) resulted in cell variant, H9-araC cells, that was >600-fold resistant to the drug and cross resistant to its analogs and other unrelated nucleosides, e.g. dideoxycytidine (5-fold), thiacytidine (2-fold), 2-fluoro-adenine arabinoside (8.3-fold), and 2-chloro-deoxyadenosine (2.1-fold). Compared to the parental cell line, the resistant cells accumulated <1% araCTP, and had reduced deoxycytidine kinase (dCK) activity (31.4%) and equilibrative nucleoside transporter 1 (ENT1) protein. The expression of the dCK gene in araC resistant cells was reduced to 60% of H9 cells, which correlated with lower dCK protein and activity. Whereas, there was no difference in the expression of ENT1 mRNA between the cell lines, ENT1 protein content was much lower in the resistant cells than in H9 cells. The concentrative nucleoside transporter (CNT3) was slightly increased in H9-araC cells, but CNT2, and MDR1 remained unaffected. Although a definitive correlation remains to be established, the amount of Sp1 protein, a transcription factor, that regulates the expressions of dCK, nucleoside transporters and other cellular proteins, was found reduced in H9-araC cells. Like ENT1, the Sp1 mRNA levels remained unaffected in H9-araC whereas protein contents were reduced. These observations are indicative of differences in the production and/or turnover of ENT1 and Sp1 proteins in H9-araC cells. Since nucleoside transporters and dCK play an important role in the activity of potential antiviral and anticancer deoxynucleoside analogs, understanding of their regulation is important. These studies show that the exposure of cells to araC, in vitro, is capable of simultaneously affecting more than one target site to confer resistance. The importance of this observation in the clinical use of araC remains to be determined.


Assuntos
Citarabina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Linhagem Celular , Desoxicitidina Quinase/antagonistas & inibidores , Desoxicitidina Quinase/genética , Desoxicitidina Quinase/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Transportador Equilibrativo 1 de Nucleosídeo/antagonistas & inibidores , Transportador Equilibrativo 1 de Nucleosídeo/biossíntese , Transportador Equilibrativo 1 de Nucleosídeo/genética , Transportador Equilibrativo 2 de Nucleosídeo/antagonistas & inibidores , Transportador Equilibrativo 2 de Nucleosídeo/genética , Humanos , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição Sp1/antagonistas & inibidores , Fator de Transcrição Sp1/metabolismo
4.
Biochem Biophys Res Commun ; 316(2): 518-22, 2004 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-15020247

RESUMO

This report presents quantitative analysis of the synergistic interaction of azidothymidine (AZT) and cladribine (CdA) in human H9-lymphoid cell lines sensitive and resistant to AZT (H9-araC cells). H9-araC cells obtained by cultivation of H9 cells in the presence of 0.5 microM arabinosyl-cytosine (araC) had lower deoxycytidine kinase and thymidine kinase (TK) activities and expressed cross-resistance to araC and AZT. The IC(50) values of AZT and CdA were calculated by using median-effect analysis and CalcuSyn software. The IC(50) values were 0.44 and 0.82 microM for CdA and 67.8 and 30,310 microM for AZT in H9 and H9-araC cells, respectively. However, when the drugs were used in combination the IC(50) values of CdA and AZT were reduced to 0.12 and 15.5 microM in H9 cells and to 0.19 and 24.9 microM in H9-araC cells, respectively. Calculation of dose reduction index (DRI) indicated that at 50-90% growth inhibition level, the combination of the drugs caused 3.6-5.8- and 4.1-11.5-fold reduction in the dose of CdA and 4.4-37.6- and > 1000-fold reduction in the dose of AZT in H9 and H9-araC cells, respectively. The combination index (CI) values simulated from these data suggested synergistic to very strong synergistic lymphocytotoxic effects of AZT combined with CdA. These findings suggest the potential usefulness of a double-targeted approach for designing efficacious therapeutics for the kinase deficient drug resistant tumors.


Assuntos
Antineoplásicos/toxicidade , Cladribina/toxicidade , Zidovudina/toxicidade , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Resistência a Medicamentos , Sinergismo Farmacológico , Humanos , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Zidovudina/metabolismo
5.
Life Sci ; 74(7): 835-42, 2004 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-14659972

RESUMO

In vitro culture of H9 human lymphoid cells in the presence of 5.0 microM dideoxycytidine (ddC), for about 40-45 days, selected cells (H9-ddC cells), which were resistant to the drug and cross-resistant to AZT (zidovudine) and 5-fluoro-2'-deoxyuridine (FdUR). The major mechanism of cross-resistance to AZT and FdUR in these cells was low cellular activity of thymidine kinase (TK). To explore molecular mechanisms of the reduced TK activity in H9-ddC cells, the mRNA expression of TK1 and TK2 and western blot analysis of TK1 protein were performed. RT-PCR analysis revealed that in H9-ddC cells the expression of both TK1 and TK2 mRNA was reduced to 27.1% and 79.4%, respectively. The reduced TK1 gene expression was confirmed by an absence of a detectable TK1 protein band in western blot of H9-ddC cells. These results demonstrate that long-term treatment of H9 cells in the presence of ddC down-regulated TK1 and TK2 gene expression and reduced the expression and activity of TK in the resistant cells.


Assuntos
Fármacos Anti-HIV/farmacologia , Linfócitos T/efeitos dos fármacos , Timidina Quinase/genética , Zalcitabina/farmacologia , Fármacos Anti-HIV/metabolismo , Western Blotting , Células Cultivadas , Citarabina/metabolismo , Citarabina/farmacologia , Primers do DNA/química , Regulação para Baixo/genética , Resistência a Múltiplos Medicamentos/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/enzimologia , Timidina Quinase/metabolismo , Zalcitabina/metabolismo , Zidovudina/metabolismo , Zidovudina/farmacologia
6.
Biochem Biophys Res Commun ; 307(3): 564-8, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12893260

RESUMO

The aim of this study was to determine molecular mechanism(s) responsible for the reduced thymidine kinase activity (TK) observed earlier in an arabinosylcytosine (araC) resistant lymphoid cell line (H9-araC cells), which was obtained following continuous cultivation of H9 cells in the presence of 0.5 microM araC. Compared to H9 cells, in H9-araC cells TK1 and TK2 gene expressions were reduced to 17.7% and 2.5%, respectively, and the cellular AZT accumulation was diminished to 35.8%. These cells were also found cross-resistant to azidothymidine (>42-fold). There was no significant difference in the expression of MDR1, MRP4 or TK protein. The lack of correlation between the expressions of TK protein and TK1 and TK2 suggests that post-translational factors may also play a role in the reduced TK activity in H9-araC cells. These findings suggest that araC affects TK expression at the genetic level.


Assuntos
Fármacos Anti-HIV/antagonistas & inibidores , Citarabina/farmacologia , Resistência a Medicamentos , Timidina Quinase/metabolismo , Zidovudina/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Fármacos Anti-HIV/metabolismo , Western Blotting , Linhagem Celular , Relação Dose-Resposta a Droga , Regulação para Baixo , Linfócitos T , Timidina Quinase/análise , Timidina Quinase/biossíntese , Timidina Quinase/genética , Zidovudina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...